

Curriculum Subject: Physics (042) Session: 2022-23

Class: XII

EVALUATION SCHEME			
	Theory		
		Marks	
Unit - I	Electrostatics		
	Chapter - 1 : Electric Charges and Fields		
	Chapter - 2 : Electrostatic Potential and Capacitance	16	
Unit - II	Current Electricity		
	Chapter - 3 : Current Electricity		
Unit - III	Magnetic Effects of Current and Magnetism		
	Chapter - 4 : Moving Charges and Magnetism		
	Chapter - 5 : Magnetism and Matter	17	
Unit - IV	Electromagnetic Induction and Alternating Currents		
	Chapter - 6 : Electromagnetic Induction		
	Chapter - 7 : Alternating Currents		
Unit - V	Electromagnetic Wave		
	Chapter - 8 : Electromagnetic Wave		
Unit - VI	Optics	18	
	Chapter - 9 : Ray Optics and Optical Instruments		
	Chapter - 10 : Wave Optics		
Unit - VII	Dual Nature of Radiation and Matter		
	Chapter - 11 : Dual Nature of Radiation and Matter		
Unit - VIII	Atoms and Nuclei	12	
	Chapter - 12 : Atoms		
	Chapter - 13 : Nuclei		
Unit - IX	Electronic Devices		
	Chapter - 14 : Semiconductor - Electronics: Materials, Devices and Simple Circuits	7	
	Total	70	

Unit / Month	Chapter Number and Name	Practical and Competency Skill Based Activities/ Experiential Learning	Skills	Assessments
Unit I (Feb- March)	Chapter 1-Electrostatics Students will be able to: Explain: Electric charges, conservation of charge Define Coulomb's law-force between two point charges and force between multiple charges Explain: Electric field, electric field due to a point charge, electric field lines; electric dipole, torque on a dipole in a uniform electric field.	1. To determine the resistance per cm of a given wire by plotting a graph between voltage and current.	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
	 Define: electric flux, statement of Gauss' theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet. 			
	Chapter 2-Electrostatic Potential and Capacitance Students will be able to: Define:Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges Explain:Equipotential surfaces, electrical potential energy of a system of two point		Knowledge, Understanding, Application, Analysis and Evaluation.	Oral Test/ Class test/ Quizzes / lab activity
Unit 2 (April)	 Chapter 3-Current electricity Students will be able to: Define: Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility and their relation with electric current Explain: Ohm's law. Electric energy and power. Electric resistivity and conductivity. Carbon resistor. Color code for carbon resistor. Series and parallel combination of resistor. Temperature dependence of resistance. Describe: Internal resistance of a cell, potential difference and e.m.f of a cell,combination of cells in series and in parallel. Understand: Kirchhoff laws and simple applications. Wheatstone bridge, meter bridge. Potentiometer-principle and applications to measure potential difference, and for comparing e.m.f of two cells. 	2. To find the resistance of a given wire / standard resistor using a meter bridge. Or To verify the laws of combination (Series/Parallel) of resistance using meter bridge 3. To compare the e.m.f of two given primary cells using a potentiometer. Or To determine the internal resistance of given primary cell using potentiometer	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 3/ (April- May	 Explain: Magnetic field. Oersted's experiment. Magnetic field. Lorentz force. Magnetic force on a current carrying conductor placed in a uniform magnetic field.charged particle moving a uniform electric and magnetic field. Understand: Biot-Savart's law and its application to current carry a circular loop. Ampere's straight wire, straight and toroidal solenoids. Define: force on a moving charge in uniform 	 4 . To find the deflection of the galvanometer by half deflection method. 5. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same. or To convert the given 	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab Activity
	 Students will be able to: Explain: Magnetic field. Oersted's experiment. Magnetic field. Lorentz force. Magnetic force on a current carrying conductor placed in a uniform magnetic field.charged particle moving a uniform electric and magnetic field. Understand: Biot-Savart's law and its application to current carry a circular loop. Ampere's straight wire, straight and toroidal solenoids. 	the galvanometer by half deflection method. 5. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same. or To convert the given galvanometer (of known	Understandir Application, Analysis and	ng,

	parallel plates current carrying conductor. Torque experienced by a current loop in a uniform magnetic field. Moving coil galvanometer its current sensitive and conversion to ammeter and voltmeter.	desired range and to verify the same.		
	Chapter 5-Magnetism and matter Students will be able to: Define: Current loop as a magnetic dipole and it magnetic dipole moment, magnetic dipole moment of a revolving electron Explain: Bar magnet as an equivalent solenoid, magnetic field lines Understand: Earth magnetic field and magnetic elements.		Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
	Chapter 6-Electromagnetic induction and alternating Current Students will be able to: Define: Electromagnetic induction; Faraday's law, induced e.m.f and current; Lenz's law, Eddy currents. Self and mutual inductance			
Unit 4 (May- june)	Chapter 7-Alternating Current Students will be able to: Understand: Alternating current, peak and RMS value of alternating current/ voltage, reactance and impedance LC oscillation. LCR circuit, resonance Explain: power in ac Circuit, power factor, wattless current. Ac generator and transformer.	6.To find the frequency of AC mains using sonometer	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 5 July	Chapter 8-Electromagnetic waves students will be able to: Define :Electromagnetic waves and their characteristics (qualitative ideas only).Electromagnetic spectrum(Radio waves,Microwaves,Infrared, visible, ultraviolet,X-rays, Gamma rays) including elementary facts about their uses.		Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 6 (July- August)	·	7. To find the focal length of convex lens by plotting graph between u and v. Or between 1/u and 1/v 8. To find the focal length of convex mirror, using a convex lens or	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
	 Explain: Magnification, power of a lens and combination of thin lenses in contact, combination of lens and mirror. Describe: refraction and dispersion of light through a prism. 	To find the focal length of a concave lens, using a convex lens. 9. To determine the angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation. 10. To determine the refractive index of a glass slab using a traveling microscope.		

	Chapter 10-Wave Optics Students will be able to: • Explain :Wave optics,Wavefront and Huygens' principle, reflection and refraction of plane waves at a plane surface using wave fronts. Give Proof of laws of reflection and refraction using Huygens principle. Interference, young's double slit experiment and expression for fringe width.diffraction due to single slit, width of central maximum.	11. To find the refractive index of liquid by using a convex lens and a plane mirror.	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 7 (September)	Chapter 11-Dual matter of radiation students will be able to: • Explain: The Dual nature of radiation. Photoelectric effect, Hertz observation.State Einstein's photoelectric equation- particle nature of light. • Describe: Matter waves-wave nature of particles, de Broglie relation.		Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 8 (October)	Chapter 12-Atoms Students will be able to: Define: Alpha particles scattering experiment, Rutherfordr model of atom, bohr model, energy levels, hydrogen spectrum Chapter - 13- Nuclei Students will be able to: Explain: Composition and size of nucleus,Radioactivity, alpha beta and gamma particle and their properties, radioactive decay law, mass energy relation, must defect, binding energy per nucleon and its variation with mass number, nuclear fission and nuclear fusion		Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity
Unit 9 (november)	Chapter 14-Electronic devices Students will be able to: Describe: energy bands in solids (qualitative) conductors, insulators and semiconductors; semiconductor diode I-V characteristics in forward and reverse bias, diode as a rectifier. Define: junction transistor, transistor action, characteristics of a transistor.	12. To draw the I-V characteristics curve for a p-n junction diode in forward bias and reverse bias.	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / lab activity

Evaluation Scheme

Two experiments one from each section	7 +7 marks
Practical record [experiments and activities]	5 marks
One activity from any section	3 marks
Investigatory Project	3 marks
Viva on experiments, and activities	5 marks
Total	30 marks